Step 1: Composite Simpson’s \(1/3\) rule with \(h=0.5\) on \([-1,1]\) uses the nodes
\[
x_0=-1,\; x_1=-0.5,\; x_2=0,\; x_3=0.5,\; x_4=1.
\]
Let \(f(x)=\sqrt{1-x^2}\). Then
\[
f(\pm1)=0,\quad f(0)=1,\quad f(\pm 0.5)=\sqrt{1-\tfrac14}=\frac{\sqrt{3}}{2}.
\]
Step 2: Apply the formula
\[
I \approx \frac{h}{3}\Big[f(x_0)+f(x_4)+4\big(f(x_1)+f(x_3)\big)+2f(x_2)\Big]
= \frac{0.5}{3}\Big[0+4\!\left(\sqrt{3}\right)+2\Big]
= \frac{2\sqrt{3}+1}{3}.
\]
Since \(\dfrac{2\sqrt{3}}{3}=\dfrac{2}{\sqrt{3}}\), the estimate equals \(\boxed{\dfrac{1}{3}+\dfrac{2}{\sqrt{3}}}\).