Question:

Match the LIST-I with LIST-II:\[\begin{array}{|c|c|} \hline \textbf{LIST-I} & \textbf{LIST-II} \\ \hline \text{A. Gauss Seidel method} & \text{I. Interpolation} \\ \hline \text{B. Forward Newton method} & \text{II. Non-linear Differential equation} \\ \hline \text{C. Runge Kutta method} & \text{III. Numerical Integration} \\ \hline \text{D. Trapezoidal rule} & \text{IV. Linear algebraic equations} \\ \hline \end{array}\] Choose the correct answer from the options given below:

Show Hint

When matching methods to categories, consider the specific purpose of the method: solving equations, integrating, or interpolating.
Updated On: Sep 24, 2025
  • A - I, B - II, C - III, D - IV
  • A - II, B - III, C - IV, D - I
  • A - III, B - I, C - II, D - I
  • A - IV, B - I, C - II, D - III
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation


Step 1: Understand the methods in LIST-I.
- **Gauss Seidel method** is a technique used for solving **Linear Algebraic Equations**. - **Forward Newton method** is used for **Interpolation**. - **Runge Kutta method** is a **Numerical Integration** technique. - **Trapezoidal rule** is another method for **Numerical Integration**.

Step 2: Match the methods from LIST-I with their respective categories in LIST-II.
- A. Gauss Seidel method corresponds to **IV. Linear algebraic equations**. - B. Forward Newton method corresponds to **I. Interpolation**. - C. Runge Kutta method corresponds to **II. Non-linear Differential equation**. - D. Trapezoidal rule corresponds to **III. Numerical Integration**.

Final Answer: \[ \boxed{\text{(C) A - III, B - I, C - II, D - I}} \]

Was this answer helpful?
0
0