Step 1: Use trigonometric identities.
We apply the sum identities for sine and cosine:
\[
\sin \left( \frac{\pi}{3} + x \right) = \sin \frac{\pi}{3} \cos x + \cos \frac{\pi}{3} \sin x
\]
and
\[
\cos \left( \frac{\pi}{6} + x \right) = \cos \frac{\pi}{6} \cos x - \sin \frac{\pi}{6} \sin x
\]
Step 2: Substitute the values.
Using \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \), \( \cos \frac{\pi}{3} = \frac{1}{2} \), \( \sin \frac{\pi}{6} = \frac{1}{2} \), and \( \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \), we get:
\[
\sin \left( \frac{\pi}{3} + x \right) - \cos \left( \frac{\pi}{6} + x \right) = \sin x
\]
Step 3: Conclusion.
The correct answer is (D) \( \sin x \).