Simplify: \( \tan x - \cot x + \csc x \sec x \)
Step 1: Express in Terms of Sine and Cosine \[ \tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \csc x = \frac{1}{\sin x}, \quad \sec x = \frac{1}{\cos x} \] Step 2: Compute the Given Expression \[ \tan x - \cot x + \csc x \sec x \] \[ = \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} + \frac{1}{\sin x} \times \frac{1}{\cos x} \] \[ = \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} + \frac{1}{\sin x \cos x} \] Step 3: Factorize \[ = \frac{\sin^2 x - \cos^2 x + 1}{\sin x \cos x} \] Since \( \sin^2 x + \cos^2 x = 1 \), we get: \[ = \frac{1 - \cos^2 x + \sin^2 x}{\sin x \cos x} = \frac{\sin^2 x + \sin^2 x}{\sin x \cos x} \] \[ = \frac{2 \sin^2 x}{\sin x \cos x} = 2 \frac{\sin x}{\cos x} = 2 \tan x \]
Final Answer: \[ \boxed{2 \tan x} \]
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: