Composite Angle with Trigonometric Multipliers}
Use sum of angles identity for sine
Apply trigonometric reciprocals like \( \sec = \frac{1}{\cos} \)
Always simplify carefully to avoid algebraic errors
Using identity:
\[
\sin(x+y) = \sin x \cos y + \cos x \sin y
\]
Multiplying by \( \sec x \sec y \):
\[
\sin(x+y) \sec x \sec y = \frac{\sin x}{\cos x} + \frac{\sin y}{\cos y} = \tan x + \tan y
\]