Question:

Simplify: \( \sin(x + y) \sec x \sec y = \)

Show Hint

Composite Angle with Trigonometric Multipliers}
Use sum of angles identity for sine
Apply trigonometric reciprocals like \( \sec = \frac{1}{\cos} \)
Always simplify carefully to avoid algebraic errors
Updated On: May 19, 2025
  • \( \cos x \cos y \)
  • \( \tan x - \tan y \)
  • \( \cos x + \cos y \)
  • \( \tan x + \tan y \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Using identity: \[ \sin(x+y) = \sin x \cos y + \cos x \sin y \] Multiplying by \( \sec x \sec y \): \[ \sin(x+y) \sec x \sec y = \frac{\sin x}{\cos x} + \frac{\sin y}{\cos y} = \tan x + \tan y \]
Was this answer helpful?
0
0