Convert to sin and cos:
\[
\tan\theta = \frac{\sin\theta}{\cos\theta},\quad \cot\theta = \frac{\cos\theta}{\sin\theta}
\]
So:
\[
\frac{\cos\theta}{1 - \frac{\sin\theta}{\cos\theta}} + \frac{\sin\theta}{1 - \frac{\cos\theta}{\sin\theta}}
= \frac{\cos^2\theta}{\cos\theta - \sin\theta} + \frac{\sin^2\theta}{\sin\theta - \cos\theta}
= \frac{\cos^2\theta - \sin^2\theta}{\cos\theta - \sin\theta}
= \frac{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}{\cos\theta - \sin\theta}
\Rightarrow \cos\theta + \sin\theta
\]