>
Exams
>
Mathematics
>
Trigonometric Identities
>
simplify dfrac cos theta 1 tan theta dfrac sin the
Question:
Simplify:
$\dfrac{\cos\theta}{1 - \tan\theta} + \dfrac{\sin\theta}{1 - \cot\theta}$
Show Hint
Rational expressions simplify faster when converted to $\sin\theta, \cos\theta$ terms.
AP EAPCET - 2022
AP EAPCET
Updated On:
May 18, 2025
$\cos\theta - \sin\theta$
$\sin\theta - \cos\theta$
$\cos\theta + \sin\theta$
$(1 - \tan\theta)\sin\theta$
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Convert to sin and cos: \[ \tan\theta = \frac{\sin\theta}{\cos\theta},\quad \cot\theta = \frac{\cos\theta}{\sin\theta} \] So: \[ \frac{\cos\theta}{1 - \frac{\sin\theta}{\cos\theta}} + \frac{\sin\theta}{1 - \frac{\cos\theta}{\sin\theta}} = \frac{\cos^2\theta}{\cos\theta - \sin\theta} + \frac{\sin^2\theta}{\sin\theta - \cos\theta} = \frac{\cos^2\theta - \sin^2\theta}{\cos\theta - \sin\theta} = \frac{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)}{\cos\theta - \sin\theta} \Rightarrow \cos\theta + \sin\theta \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Trigonometric Identities
Given the equation: \[ 81 \sin^2 x + 81 \cos^2 x = 30 \] Find the value of \( x \)
.
MHT CET - 2025
Mathematics
Trigonometric Identities
View Solution
The value of
$ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2 \left( \frac{1}{2} \right)} + 1}{\tan \left( \frac{1}{2} \right)} \right) $ is equal to:
JEE Main - 2025
Mathematics
Trigonometric Identities
View Solution
If \( \frac{\pi}{2} \leq x \leq \frac{3\pi}{4} \), then \( \cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right) \) is equal to:
JEE Main - 2025
Mathematics
Trigonometric Identities
View Solution
Prove that:
\[ \frac{\cos \theta - 2 \cos^3 \theta}{\sin \theta - 2 \sin^3 \theta} + \cot \theta = 0 \]
CBSE Class X - 2025
Mathematics
Trigonometric Identities
View Solution
If \( \sin x + \sin^2 x = 1 \), \( x \in \left(0, \frac{\pi}{2} \right) \), then the expression
\[ (\cos^2 x + \tan^2 x) + 3(\cos^4 x + \tan^4 x + \cos^4 x + \tan^4 x) + (\cos^6 x + \tan^6 x) \] is equal to:
JEE Main - 2025
Mathematics
Trigonometric Identities
View Solution
View More Questions
Questions Asked in AP EAPCET exam
If the equation of the circle having the common chord to the circles $$ x^2 + y^2 + x - 3y - 10 = 0 $$ and $$ x^2 + y^2 + 2x - y - 20 = 0 $$ as its diameter is $$ x^2 + y^2 + \alpha x + \beta y + \gamma = 0, $$ then find $ \alpha + 2\beta + \gamma $.
AP EAPCET - 2025
Circle
View Solution
The equation of chord AB of ellipse \(2x^2 + y^2 = 1\) is \(x - y + 1 = 0\). If O is the origin, then \(\angle AOB =\)
AP EAPCET - 2025
Geometry
View Solution
The ratio of the efficiencies of two Carnot engines A and B is 1.25 and the temperature difference between the source and the sink is the same in both engines. The ratio of the absolute temperatures of the sources of the engines A and B is
AP EAPCET - 2025
Thermodynamics
View Solution
The domain of the real valued function $ f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x) $ is
AP EAPCET - 2025
Functions
View Solution
If \(\alpha, \beta, \gamma\) are the roots of the equation \[ x^3 - 13x^2 + kx + 189 = 0 \] such that \(\beta - \gamma = 2\), then find the ratio \(\beta + \gamma : k + \alpha\).
AP EAPCET - 2025
Algebra
View Solution
View More Questions