Step 1: Expand the cosine term.
\[
\cos\left(\frac{3\pi}{4}+x\right)
= \cos\frac{3\pi}{4}\cos x - \sin\frac{3\pi}{4}\sin x
\]
\[
= -\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x
\]
Step 2: Expand the sine term.
\[
\sin\left(\frac{\pi}{4}-x\right)
= \sin\frac{\pi}{4}\cos x - \cos\frac{\pi}{4}\sin x
\]
\[
= \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x
\]
Step 3: Subtract the expressions.
\[
\left(-\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x\right)
-
\left(\frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x\right)
\]
Step 4: Simplify.
\[
= -\frac{2}{\sqrt{2}}\cos x = -\sqrt{2}\cos x
\]
Step 5: Conclusion.
Hence, the simplified expression is \( -\sqrt{2}\cos x \).