Simplify \(\cos\theta\) \(\begin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}\)+\(\sin\theta\) \(\begin{bmatrix}\sin\theta&-\cos\theta\\\cos\theta&\sin\theta\end{bmatrix}\)
\(\cos\theta\)\(\begin{bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{bmatrix}\)+\(\sin\theta\)\(\begin{bmatrix}\sin\theta&-\cos\theta\\\cos\theta&\sin\theta\end{bmatrix}\)
=\(\begin{bmatrix}\cos^2\theta&\cos\theta\sin\theta\\-\sin\theta\cos\theta&\cos^2\theta\end{bmatrix}\)+\(\begin{bmatrix}\sin^2\theta&-\sin\theta\cos\theta\\\sin\theta\cos\theta&\sin^2\theta\end{bmatrix}\)
=\(\begin{bmatrix}\cos^2\theta+\sin^2\theta&\cos\theta\sin\theta-\sin\theta\cos\theta\\-\sin\theta\cos\theta+\sin\theta\cos\theta&\cos^2\theta+\sin^2\theta\end{bmatrix}\)
=\(\begin{bmatrix}1&0\\0&1\end{bmatrix}\)
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)