Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is \(tan^{-1}\sqrt{2}.\)
Let \(θ\) be the semi-vertical angle of the cone.
It is clear that\( θ\)\(∈[0,\frac{\pi}{2}]\).
Let\( r,h\), and l be the radius,height,and the slant height of the cone respectively.
The slant height of the cone is given as constant.
Now\(,r=lsin θ\) and \(h=lcos θ\)
The volume\((V)\)of the cone is given by,
\(V=\frac{1}{3}\pi r^{2}h\)
\(=\frac{1}{3}\pi (l^{2}sin^{2}θ)(lcosθ)\)
\(=\frac{1}{3}\pi l^{2}sin^{2}θcosθ\)
\(∴\frac{dV}{dθ}\)\(=l^{3}\frac{\pi}{3}\)\([sin^{2}θ(-sinθ)+cosθ(2sinθcosθ)]\)
\(=\frac{l^{3}\pi}{3}[-sin^{3}+2sinθcos^{2}θ]\)
\(\frac{d^{2}V}{dθ}\)=\(=\frac{l^{3}\pi}{3}\)\([-3sin^{2}θcosθ+2cos^{3}θ-4sin^{2}θcosθ]\)
\(=\frac{l^{3}\pi}{3}\)\([2cos^{3}θ-7sin^{2}θcosθ]\)
Now,\(\frac{dV}{dθ}=0\)
\(⇒sin^{3}θ=2sinθcos^{2}θ\)
\(⇒tan^{2}θ=2\)
\(⇒tanθ=\sqrt{2}\)
\(⇒θ=tan^{-1}\sqrt{2}\)
Now,when \(⇒θ=tan^{-1}\sqrt{2}\),then \(tan^{2}θ=2 \) or \(sin^{2}θ=2cos^{2}θ.\)
Then,we have:
\(\frac{d^{2}V}{dθ}\)=\(=\frac{l^{3}\pi}{3}\)\([2cos^{3}θ-14cos^{3}θ]\)\(=-4\pi l^{3}cos^{3}θ<0 for θ∈[0,\frac{\pi}{2}]\)
By second derivative test,the volume(V)is the maximum when \( θ=tan^{-1}\sqrt{2}\)
Hence,for a given slant height,the semi-vertical angle of the cone of the maximum
volume is \(tan^{-1}\sqrt{2}\)
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
It is given that at x = 1, the function x4−62x2+ax+9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum profit that a company can make, if the profit function is given by p(x) = 41−24x−18x2
What is the Planning Process?