A function is strictly increasing if \( f'(x)>0 \) for all \( x \in \mathbb{R} \).
\[
f(x) = x^3 + 10x + 7, \quad f'(x) = 3x^2 + 10.
\]
Since \( 3x^2 \geq 0 \) and \( 10>0 \), \( f'(x) = 3x^2 + 10 \geq 10>0 \) for all \( x \).
Thus, \( f(x) \) is strictly increasing.