Show that points A (a,b+c),B (b,c+a),C (c,a+b) are collinear
Area of ∆ ABC is given by the relation,
△=\(\frac{1}{2}\)\(\begin{vmatrix}a&b+c&1\\b&c+a&1\\c&a+b&1\end{vmatrix}\)
=\(\frac{1}{2}\)\(\begin{vmatrix}a&b+c&1\\b-a&a-b&0\\c-a&a-c&0\end{vmatrix}\) (Applying R2\(\to\) R2-R1 and R33\(\to\)R3-R1)
=\(\frac{1}{2}\)(a-b)(c-a)\(\begin{vmatrix}a&b+c&1\\-1&1&0\\1&-1&0\end{vmatrix}\)
=\(\frac{1}{2}\)(a-b)(c-a)\(\begin{vmatrix}a&b+c&1\\-1&1&0\\1&-1&0\end{vmatrix}\) (applying R3\(\to\) R3+R2)
=0 (All elements of R3 are 0)
Thus, the area of the triangle formed by points A, B, and C is zero
Hence, the points A, B, and C are collinear.
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |