Let a rectangle of length l and breadth b be inscribed in the given circle of radius a.
Then,the diagonal passes through the centre and is of length \(2a \space cm.\)
Now,by applying the Pythagoras theorem,we have:
\((2a)^2=l^2+b^2\)
\(⇒b^2=4a^2-l^2\)
\(⇒b=\sqrt{4a^2-l^2}\)
⧠Area of the rectangle\(,A=l\sqrt{4a^2-l^2}\)
\(∴\frac{dA}{dl}\)\(=\sqrt{4a^2-l^2}+l\frac{1}{2√4a^2-l^2}(-2l)=\sqrt{4a^2-l^2}-\frac{l^2}{\sqrt{4a^2-l^2}}\)
\(=\frac{4a^2-2l^2}{\sqrt{4a^2-l^2}}\)
\(\frac{d^2A}{dl^2}=\frac{\sqrt{4a^2-l^2}(-4l)-(4a^2-2l^2)\frac{(-2l)}{2\sqrt{4a^2-l^2}}}{(4a^2-l^2)}\)
\(=\frac{(4a62-l62)(-4l)+l(4a^2-2l^2)}{(4a^2-l^2)\frac{3}{2}}\)
\(=\frac{-12a^2l+2l^3}{(4a^2-l^2)\frac{3}{2}}\)=\(\frac{-2l(6a^2-l^2)}{(4a^2-l^2)\frac{3}{2}}\)
Now\(,\frac{dA}{dl}=0\) gives \(4a^2=2l^2⇒l=\sqrt{2}a\)
\(⇒b=\sqrt{4a^2-2a^2}=\sqrt{2a^2}=\sqrt{2}a\)
Now,then\( l=\sqrt{2}a\)
\(\frac{d^2A}{dl^2}\)=\(\frac{-2(\sqrt{2}a)(6a^2-2a^2)}{2\sqrt{2}a^3}\)=\(\frac{-8\sqrt{2}a^3}{2\sqrt{2}a^3}=-4<0\)
∴By the second derivative test,when\( l=\sqrt{2}a\),then the area of the rectangle is the
maximum.
Since \(l=b=\sqrt{2}a\),the rectangle is a square.
Hence,it has been proved that of all the rectangles inscribed in the given fixed circle,
the square has the maximum area.
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
Analyse the characters of William Douglas from ‘Deep Water’ and Mukesh from ‘Lost Spring’ in terms of their determination and will power in pursuing their goals.
Convert Propanoic acid to Ethane