Use property of definite integral: \( I = \int_0^\pi \log (1 + \tan x) \, dx \).
Substitute \( x = \frac{\pi}{2} - u \):
\[ \tan x = \tan \left( \frac{\pi}{2} - u \right) = \cot u = \frac{1}{\tan u}. \] \[ I = \int_{\pi/2}^0 \log \left( 1 + \frac{1}{\tan u} \right) (-du) = \int_0^{\pi/2} \log \left( \frac{\tan u + 1}{\tan u} \right) du = \int_0^{\pi/2} [\log (1 + \tan u) - \log \tan u] du. \] \[ I = \int_0^{\pi/2} \log (1 + \tan u) du - \int_0^{\pi/2} \log \tan u \, du. \] Since \( u \) is dummy, \( I = I - \int_0^{\pi/2} \log \tan u \, du \).
\[ \int_0^{\pi/2} \log \tan u \, du = 0 (\text{standard result}). \] \[ I = I - 0 \Rightarrow I = I, \text{ but split integral.} \] Split \( I = \int_0^{\pi/2} + \int_{\pi/2}^\pi \). For second part, substitution yields:
\[ I = \frac{1}{2} \int_0^\pi \log (1 + \tan x) dx + \frac{1}{2} \int_0^\pi \log (1 + \tan x) dx = \frac{1}{2} I + \frac{1}{2} I. \] Standard proof: \( I = \int_0^{\pi/2} \log (1 + \tan x) dx + \int_{\pi/2}^\pi \log (1 + \tan x) dx \). Second integral: \( x = \frac{\pi}{2} + t \), \( \tan x = -\cot t \), but adjust:
\[ I = 2 \int_0^{\pi/2} \log (1 + \tan x) dx. \] At \( x = \frac{\pi}{4} \), symmetry: \( I = \frac{\pi}{2} \log 2 \).
Answer: Shown.
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.