Show that
(i)\(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)\(\neq \begin{bmatrix}2&1\\3&4\end{bmatrix}\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)
(ii)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\neq \) \(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)
(i)\(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)
=\(\begin{bmatrix}5(2)-1(3)&5(1)-1(4)\\6(2)+7(3)&6(1)+7(4)\end{bmatrix}\)
=\(\begin{bmatrix}10-3&5-4\\12+21&6+28\end{bmatrix}\)=\(\begin{bmatrix}7&1\\33&34\end{bmatrix}\)
\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)
=\(\begin{bmatrix}2(5)+1(6)&2(-1)+1(7)\\3(5)+4(6)&3(-1)+4(7)\end{bmatrix}\)
=\(\begin{bmatrix}10+6&-2+7\\15+24&-3+28\end{bmatrix}\)
=[\(\begin{bmatrix}16&5\\39&25\end{bmatrix}\)
\(\therefore\) \(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)≠\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)\(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)
(ii)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)
=\(\begin{bmatrix}1(-1)+2(0)+3(2)&1(1)+2(-1)+3(3)&1(0)+2(-1)+3(4)\\0(-1)+1(0)+0(2)&0(1)+1(-1)+0(3)&0(0)+1(1)+0(4)\\1(-1)+1(0)+0(2)&1(1)+1(-1)+0(3)&1(0)+1(1)+0(4)\end{bmatrix}\)
=\(\begin{bmatrix}5&8&14\\0&-1&1\\ -1&0&1\end{bmatrix}\)
\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)
=\(\begin{bmatrix}-1(1)1(0)+0(1)&-1(2)+1(1)+0(1)&-1(3)+1(0)+0(0)\\0(1)+(-1(0)+1(1)&0(2)+(-1)(1)+1(1)&0(3)+(-1)(0)+1(0)\\2(1)+3(0)+4(1)&2(2)+3(1)+4(1)&2(3)+3(0)+4(0)\end{bmatrix}\)
=\(\begin{bmatrix}-1&-1&-3\\1&0&0\\ 6&11&6\end{bmatrix}\)
\(\therefore\) \(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)≠ \(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: