Show that
(i)\(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)\(\neq \begin{bmatrix}2&1\\3&4\end{bmatrix}\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)
(ii)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\neq \) \(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)
(i)\(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)
=\(\begin{bmatrix}5(2)-1(3)&5(1)-1(4)\\6(2)+7(3)&6(1)+7(4)\end{bmatrix}\)
=\(\begin{bmatrix}10-3&5-4\\12+21&6+28\end{bmatrix}\)=\(\begin{bmatrix}7&1\\33&34\end{bmatrix}\)
\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)
=\(\begin{bmatrix}2(5)+1(6)&2(-1)+1(7)\\3(5)+4(6)&3(-1)+4(7)\end{bmatrix}\)
=\(\begin{bmatrix}10+6&-2+7\\15+24&-3+28\end{bmatrix}\)
=[\(\begin{bmatrix}16&5\\39&25\end{bmatrix}\)
\(\therefore\) \(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)≠\(\begin{bmatrix}2&1\\3&4\end{bmatrix}\)\(\begin{bmatrix}5&-1\\6&7\end{bmatrix}\)
(ii)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)
=\(\begin{bmatrix}1(-1)+2(0)+3(2)&1(1)+2(-1)+3(3)&1(0)+2(-1)+3(4)\\0(-1)+1(0)+0(2)&0(1)+1(-1)+0(3)&0(0)+1(1)+0(4)\\1(-1)+1(0)+0(2)&1(1)+1(-1)+0(3)&1(0)+1(1)+0(4)\end{bmatrix}\)
=\(\begin{bmatrix}5&8&14\\0&-1&1\\ -1&0&1\end{bmatrix}\)
\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)
=\(\begin{bmatrix}-1(1)1(0)+0(1)&-1(2)+1(1)+0(1)&-1(3)+1(0)+0(0)\\0(1)+(-1(0)+1(1)&0(2)+(-1)(1)+1(1)&0(3)+(-1)(0)+1(0)\\2(1)+3(0)+4(1)&2(2)+3(1)+4(1)&2(3)+3(0)+4(0)\end{bmatrix}\)
=\(\begin{bmatrix}-1&-1&-3\\1&0&0\\ 6&11&6\end{bmatrix}\)
\(\therefore\) \(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)\(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)≠ \(\begin{bmatrix}-1&1&0\\0&-1&1\\ 2&3&4\end{bmatrix}\)\(\begin{bmatrix}1&2&3\\0&1&0\\ 1&1&0\end{bmatrix}\)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |