Step 1: Define the absolute value function.
The absolute value function \( |x| \) is defined as:
\[
|x| = \begin{cases}
x, & x>0,
-x, & x<0.
\end{cases}
\]
Step 2: Differentiate for \( x>0 \).
For \( x>0 \), \( |x| = x \). The derivative is:
\[
\frac{d}{dx} (|x|) = \frac{d}{dx} (x) = 1.
\]
Step 3: Differentiate for \( x<0 \).
For \( x<0 \), \( |x| = -x \). The derivative is:
\[
\frac{d}{dx} (|x|) = \frac{d}{dx} (-x) = -1.
\]
Step 4: Combine the results.
For both cases (\( x>0 \) and \( x<0 \)), the derivative can be written as:
\[
\frac{d}{dx} (|x|) = \frac{x}{|x|}.
\]
Step 5: Exclude \( x = 0 \).
At \( x = 0 \), the derivative is undefined because \( \frac{x}{|x|} \) involves division by zero. Therefore, this result holds only for \( x \neq 0 \).
Conclusion:
The result is shown:
\[
\boxed{\frac{d}{dx} (|x|) = \frac{x}{|x|}, \quad x \neq 0}.
\]