Step 1: Understanding the Concept:
To show that three given position vectors form the vertices of a right-angled triangle, we can find the vectors representing the sides of the triangle.
If any two of these side vectors are perpendicular to each other, the triangle is a right-angled triangle.
Two vectors are perpendicular if their dot product (scalar product) is zero.
Step 2: Key Formula or Approach:
Let the position vectors of the vertices A, B, and C be \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) respectively.
The vectors representing the sides are \(\vec{AB} = \vec{b} - \vec{a}\), \(\vec{BC} = \vec{c} - \vec{b}\), and \(\vec{AC} = \vec{c} - \vec{a}\).
The condition for a right-angled triangle is that the dot product of any two side vectors is zero, for example, \(\vec{AB} \cdot \vec{AC} = 0\).
Step 3: Detailed Explanation or Calculation:
Let the given position vectors be:
\(\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}\)
\(\vec{b} = 2\hat{i} - \hat{j} + \hat{k}\)
\(\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}\)
Now, let's find the vectors for the sides of the triangle:
\(\vec{AB} = \vec{b} - \vec{a} = (2\hat{i} - \hat{j} + \hat{k}) - (3\hat{i} - 4\hat{j} - 4\hat{k})\)
\(\vec{AB} = (2-3)\hat{i} + (-1 - (-4))\hat{j} + (1 - (-4))\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}\)
\(\vec{BC} = \vec{c} - \vec{b} = (\hat{i} - 3\hat{j} - 5\hat{k}) - (2\hat{i} - \hat{j} + \hat{k})\)
\(\vec{BC} = (1-2)\hat{i} + (-3 - (-1))\hat{j} + (-5 - 1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}\)
\(\vec{AC} = \vec{c} - \vec{a} = (\hat{i} - 3\hat{j} - 5\hat{k}) - (3\hat{i} - 4\hat{j} - 4\hat{k})\)
\(\vec{AC} = (1-3)\hat{i} + (-3 - (-4))\hat{j} + (-5 - (-4))\hat{k} = -2\hat{i} + \hat{j} - \hat{k}\)
Next, we calculate the dot products of these side vectors:
\(\vec{AB} \cdot \vec{BC} = (-\hat{i} + 3\hat{j} + 5\hat{k}) \cdot (-\hat{i} - 2\hat{j} - 6\hat{k}) = (-1)(-1) + (3)(-2) + (5)(-6) = 1 - 6 - 30 = -35\)
\(\vec{BC} \cdot \vec{AC} = (-\hat{i} - 2\hat{j} - 6\hat{k}) \cdot (-2\hat{i} + \hat{j} - \hat{k}) = (-1)(-2) + (-2)(1) + (-6)(-1) = 2 - 2 + 6 = 6\)
\(\vec{AB} \cdot \vec{AC} = (-\hat{i} + 3\hat{j} + 5\hat{k}) \cdot (-2\hat{i} + \hat{j} - \hat{k}) = (-1)(-2) + (3)(1) + (5)(-1) = 2 + 3 - 5 = 0\)
Step 4: Final Answer:
Since the dot product \(\vec{AB} \cdot \vec{AC} = 0\), the sides represented by vectors \(\vec{AB}\) and \(\vec{AC}\) are perpendicular to each other.
Therefore, the triangle formed by the given position vectors is a right-angled triangle, with the right angle at vertex A.