Step 1: Understanding the Concept:
This problem involves the scalar triple product and the properties of the standard orthogonal unit vectors \( \hat{i}, \hat{j}, \hat{k} \).
The expression \( \vec{a} \cdot (\vec{b} \times \vec{c}) \) is known as the scalar triple product.
Step 2: Key Formula or Approach:
We need to use the cyclic properties of the cross product of unit vectors:
\( \hat{i} \times \hat{j} = \hat{k} \)
\( \hat{j} \times \hat{k} = \hat{i} \)
\( \hat{k} \times \hat{i} = \hat{j} \)
And the anti-cyclic properties:
\( \hat{j} \times \hat{i} = -\hat{k} \)
\( \hat{k} \times \hat{j} = -\hat{i} \)
\( \hat{i} \times \hat{k} = -\hat{j} \)
We also use the dot product properties: \( \hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1 \).
Step 3: Detailed Explanation:
Let's evaluate each term of the expression separately.
Term 1: \( \hat{i} \cdot (\hat{j} \times \hat{k}) \)
Using the cyclic property, \( \hat{j} \times \hat{k} = \hat{i} \).
\[ \hat{i} \cdot (\hat{i}) = 1 \]
Term 2: \( \hat{j} \cdot (\hat{i} \times \hat{k}) \)
Using the anti-cyclic property, \( \hat{i} \times \hat{k} = -\hat{j} \).
\[ \hat{j} \cdot (-\hat{j}) = -(\hat{j} \cdot \hat{j}) = -1 \]
Term 3: \( \hat{k} \cdot (\hat{i} \times \hat{j}) \)
Using the cyclic property, \( \hat{i} \times \hat{j} = \hat{k} \).
\[ \hat{k} \cdot (\hat{k}) = 1 \]
Now, add the values of the three terms:
\[ \text{Value} = 1 + (-1) + 1 = 1 \]
Step 4: Final Answer:
The value of the given expression is 1.