Identifying 'Saheli'. 'Saheli', known generically as Centchroman, is a non-steroidal oral contraceptive developed by the Central Drug Research Institute (CDRI) in India. Unlike typical hormonal contraceptives that contain estrogen or progestin, Saheli works by blocking estrogen receptors in the uterus, thus preventing the implantation of the egg without the side effects associated with steroid-based pills.
Match List-I with List-II:
\[
\begin{array}{|l|l|}
\hline
\textbf{List-I (Name of Drug)} & \textbf{List-II (Indication)} \\
\hline
A. \ \text{Baclofen} & I. \ \text{Spasticity} \\
B. \ \text{Diclofenac} & II. \ \text{Inflammatory pain} \\
C. \ \text{Gabapentin} & III. \ \text{Central or peripheral neurogenic pain} \\
D. \ \text{Amitryptiline} & IV. \ \text{Depression} \\
\hline
\end{array}
\]
Match List-I with List-II
\[
\begin{array}{|l|l|}
\hline
\textbf{LIST I} & \textbf{LIST II} \\
\hline
A. \ \text{Dopamine} & I. \ \text{Intradermal} \\
B. \ \text{Nitroglycerine} & II. \ \text{Intravenous} \\
C. \ \text{BCG vaccine} & III. \ \text{Subcutaneous} \\
D. \ \text{Insulin} & IV. \ \text{Sublingual} \\
\hline
\end{array}
\]
Match List-I with List-II
\[
\begin{array}{|l|l|}
\hline
\textbf{LIST-I (Pharmacological Terms)} & \textbf{LIST-II (Definitions)} \\
\hline
A. \ \text{Pharmacokinetics} & I. \ \text{It deals with the biological and therapeutic effect of the drugs including the mechanism of drug action} \\
B. \ \text{Pharmacogenetics} & II. \ \text{It deals with the absorption, distribution, metabolism and excretion of drugs} \\
C. \ \text{Pharmacodynamics} & III. \ \text{It is related with development of new dosage forms and new drug delivery system with a view to produce desired pharmacokinetics and pharmacodynamic characteristics of drug} \\
D. \ \text{Biopharmaceutics} & IV. \ \text{It deals with the study of variation in drug response and metabolism due to inherited abnormalities} \\
\hline
\end{array}
\]
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: