For Solution 1,
\(\Lambda_{m1} = \frac{1000K}{M}\)
\(M = \frac{74.5}{74.5} \times \frac{1000}{106} = 10^{-3} \, M\)
[density of solution = 1 g/mol]
\(\Lambda_1 = \frac{1000 \times 129 \times 10^{-4}}{10^{-3}}\)
\(= 129 \times 10^2 \, \text{S cm}^2 \, \text{mol}^{-1}\)
\([K = \frac{x}{R} = \frac{129 \times 10^{-2}}{100}]\)
For Solution 2,
\(K = \frac{129 \times 10^{-2}}{50}\)
\(\Lambda_2 = \frac{1000 \times 129 \times 10^{-2}}{50M}\)
\(M = \frac{149}{74.5} \times \frac{1000}{106}\)
\(= 2 \times 10^{-3} \, M\)
\(\Lambda_2 = \frac{1000 \times 129 \times 10^{-2}}{50 \times 2 \times 10^{-3}}\)
\(= 129 \times 10^2 \, \text{S cm}^2 \, \text{mol}^{-1}\)
\(\frac{\Lambda_1}{\Lambda_2} = 1\)
\(\frac{\Lambda_1}{\Lambda_2} = 1000 \times 10^{-3}\)
The ratio of molar conductivity of solution 1 and solution 2 is,
\(\frac{\Lambda_1}{\Lambda_2} = x \times 10^{-3}\)
On comparing,
\(⇒ x = 1000\)
So, the answer is 1000.
Following figure shows dependence of molar conductance of two electrolytes on concentration. Λo m is the limiting molar conductivity. The number of incorrect statement(s) from the following is ________
(A) \(\Lambda \text{o m}\) for electrolyte A is obtained by extrapolation.
(B) For electrolyte B, \(\Lambda \text{m}\) vs \(\sqrt c\) graph is a straight line with intercept equal to o \(\Lambda \text{m}\)
(C) At infinite dilution, the value of degree of dissociation approaches zero for electrolyte B.
(D) Λo m for any electrolyte A or B can be calculated using \(\lambda0\) for individual ions.
Conductance is an expression of the ease with which electric current flows through materials like metals and nonmetals. In equations, an uppercase letter G symbolizes conductance. The standard unit of conductance is siemens (S), formerly known as mho.
Conductance in electricity is considered the opposite of resistance (R). Resistance is essentially the amount of friction a component presents to the flow of current.