Step 1: Understanding Rate of Reaction
For a general reaction:
\[
aA + bB \rightarrow cC + dD
\]
The rate of reaction is given by:
\[
{Rate} = -\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = \frac{1}{d} \frac{d[D]}{dt}
\]
Step 2: Given Reaction and Rate Expression
For the reaction:
\[
2A \rightarrow B + 3C
\]
The rate of reaction is:
\[
{Rate} = -\frac{1}{2} \frac{d[A]}{dt} = \frac{1}{3} \frac{d[C]}{dt}
\]
Since it is a zero-order reaction, the rate is constant:
\[
{Rate} = k
\]
Step 3: Finding the Rate of Production for "C"
Rearranging for \( C \):
\[
\frac{d[C]}{dt} = 3 \times k
\]
Given \( k = 3.5 \times 10^{-4} \) mol L\(^{-1}\) s\(^{-1}\):
\[
\frac{d[C]}{dt} = 3 \times (3.5 \times 10^{-4})
\]
\[
= 10.5 \times 10^{-4} { mol L}^{-1} { s}^{-1}
\]
Step 4: Conclusion
Thus, the rate of production of C is:
\[
10.5 \times 10^{-4} { mol L}^{-1} { s}^{-1}
\]