Time (Hours) | [A] (M) |
---|---|
0 | 0.40 |
1 | 0.20 |
2 | 0.10 |
3 | 0.05 |
The reaction between A2 (g) and B2 (g) was carried out in a sealed isothermal container. The rate law for the reaction was found to be:
Rate = \( k[\text{A}_2][\text{B}_2] \)
If 1 mole of A2 (g) was added to the reaction chamber and the temperature was kept constant, then predict the change in rate of the reaction and the rate constant.
The rate of the chemical reaction doubles for an increase of 10 K in absolute temperature from 298 K. Calculate activation energy (Ea).
303 R = 19.15 JK−1 mol−1, log 2 = 0.3010
For a reaction:
\( 2 \text{H}_2\text{O}_2 \xrightarrow{\text{I}} 2 \text{H}_2\text{O} + \text{O}_2 \)
The proposed mechanism is as given below:
(I) \( \text{H}_2\text{O}_2 \xrightarrow{\text{slow}} \text{H}_2\text{O} + \text{IO}^- \) (slow)
(II) \( \text{H}_2\text{O}_2 + \text{IO}^- \xrightarrow{\text{fast}} \text{H}_2\text{O} + \text{I}^+ + \text{O}_2 \) (fast)