The correct answer is 2.

Given below are two statements:
Statement (I) : The dimensions of Planck’s constant and angular momentum are same.
Statement (II) : In Bohr’s model, electron revolves around the nucleus in those orbits for which angular momentum is an integral multiple of Planck’s constant.
In the light of the above statements, choose the most appropriate answer from the options given below:

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
Given below are two statements:
Statement I:
will undergo alkaline hydrolysis at a faster rate than 
Statement II:
In
intramolecular substitution takes place first by involving lone pair of electrons on nitrogen.
The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?

If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
Niels Bohr introduced the atomic Hydrogen model in 1913. He described it as a positively charged nucleus, comprised of protons and neutrons, surrounded by a negatively charged electron cloud. In the model, electrons orbit the nucleus in atomic shells. The atom is held together by electrostatic forces between the positive nucleus and negative surroundings.
Read More: Bohr's Model of Hydrogen Atom
A hydrogen-like atom consists of a tiny positively-charged nucleus and an electron revolving around the nucleus in a stable circular orbit.
If 'e,' 'm,' and 'v' be the charge, mass, and velocity of the electron respectively, 'r' be the radius of the orbit, and Z be the atomic number, the equation for the radii of the permitted orbits is given by r = n2 xr1, where 'n' is the principal quantum number, and r1 is the least allowed radius for a hydrogen atom, known as Bohr's radius having a value of 0.53 Å.
The Bohr Model was an important step in the development of atomic theory. However, it has several limitations.