A hydrogen atom consists of an electron revolving in a circular orbit of radius r with certain velocity v around a proton located at the nucleus of the atom. The electrostatic force of attraction between the revolving electron and the proton provides the requisite centripetal force to keep it in the orbit. According to Bohr’s model, an electron can revolve only in certain stable orbits. The angular momentum of the electron in these orbits is some integral multiple of \(\frac{h}{2π}\), where h is the Planck’s constant.
Ion | Q4+ | Xb+ | Yc+ | Zd+ |
---|---|---|---|---|
Radius (pm) | 53 | 66 | 40 | 100 |
Q4+, Xb+, Yc+, Zd+ are respectively
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.