Step 1: Recall Stefan–Boltzmann law.
Radiative heat flux between a surface at temperature $T_s$ and surroundings at $T_\infty$ is
\[
\dot{q} = \sigma \, (T_s^4 - T_\infty^4)
\]
Step 2: Factorize the difference of fourth powers.
\[
T_s^4 - T_\infty^4 = (T_s - T_\infty)(T_s + T_\infty)(T_s^2 + T_\infty^2)
\]
Step 3: Compare with the given expression.
We are given:
\[
\dot{q} = A \, f(T_s, T_\infty) \, (T_s - T_\infty)
\]
Thus,
\[
f(T_s, T_\infty) = (T_s + T_\infty)(T_s^2 + T_\infty^2)
\]
Step 4: Select the correct option.
This matches option (B).
\[
\boxed{f(T_s, T_\infty) = (T_s^2 + T_\infty^2)(T_s + T_\infty)}
\]