Step 1: Start with the left-hand side (L.H.S).
\[
\text{L.H.S.} = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2
\]
Expand both terms:
\[
= (\sin^2 \theta + \csc^2 \theta + 2\sin \theta \csc \theta) + (\cos^2 \theta + \sec^2 \theta + 2\cos \theta \sec \theta)
\]
Step 2: Simplify using trigonometric identities.
\[
\sin \theta \csc \theta = 1, \quad \cos \theta \sec \theta = 1
\]
So,
\[
\text{L.H.S.} = \sin^2 \theta + \cos^2 \theta + \csc^2 \theta + \sec^2 \theta + 2 + 2
\]
\[
\Rightarrow \text{L.H.S.} = (\sin^2 \theta + \cos^2 \theta) + (\csc^2 \theta + \sec^2 \theta) + 4
\]
Step 3: Use the fundamental identity.
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
\[
\Rightarrow \text{L.H.S.} = 1 + (\csc^2 \theta + \sec^2 \theta) + 4 = 5 + \csc^2 \theta + \sec^2 \theta
\]
Step 4: Express $\csc^2 \theta$ and $\sec^2 \theta$ in terms of $\tan^2 \theta$ and $\cot^2 \theta$.
\[
\csc^2 \theta = 1 + \cot^2 \theta, \quad \sec^2 \theta = 1 + \tan^2 \theta
\]
Substitute these:
\[
\text{L.H.S.} = 5 + (1 + \cot^2 \theta) + (1 + \tan^2 \theta)
\]
\[
\text{L.H.S.} = 7 + \tan^2 \theta + \cot^2 \theta
\]
Step 5: Therefore,
\[
\boxed{\text{L.H.S.} = \text{R.H.S.}}
\]
Hence proved.