Let
\[
A = \sin^{-1} \frac{4}{5}, \quad B = \sin^{-1} \frac{5}{13}, \quad C = \sin^{-1} \frac{16}{65}.
\]
We need to show:
\[
A + B + C = \frac{\pi}{2}.
\]
Using the addition formula for sine:
\[
\sin(A + B) = \sin A \cos B + \cos A \sin B.
\]
Calculate \(\sin A, \cos A, \sin B, \cos B\):
\[
\sin A = \frac{4}{5}, \quad \cos A = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \frac{3}{5}.
\]
\[
\sin B = \frac{5}{13}, \quad \cos B = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \frac{12}{13}.
\]
Then,
\[
\sin(A + B) = \frac{4}{5} \cdot \frac{12}{13} + \frac{3}{5} \cdot \frac{5}{13} = \frac{48}{65} + \frac{15}{65} = \frac{63}{65}.
\]
Therefore,
\[
A + B = \sin^{-1} \frac{63}{65}.
\]
Now,
\[
(A + B) + C = \sin^{-1} \frac{63}{65} + \sin^{-1} \frac{16}{65}.
\]
Use sine addition formula again:
\[
\sin\big((A+B) + C\big) = \sin(A+B) \cos C + \cos(A+B) \sin C.
\]
Calculate \(\cos C\) and \(\cos(A+B)\):
\[
\cos C = \sqrt{1 - \left(\frac{16}{65}\right)^2} = \sqrt{1 - \frac{256}{4225}} = \sqrt{\frac{4225 - 256}{4225}} = \sqrt{\frac{3969}{4225}} = \frac{63}{65}.
\]
\[
\cos(A+B) = \sqrt{1 - \left(\frac{63}{65}\right)^2} = \sqrt{1 - \frac{3969}{4225}} = \sqrt{\frac{256}{4225}} = \frac{16}{65}.
\]
Then,
\[
\sin\big((A+B) + C\big) = \frac{63}{65} \cdot \frac{63}{65} + \frac{16}{65} \cdot \frac{16}{65} = \frac{3969}{4225} + \frac{256}{4225} = \frac{4225}{4225} = 1.
\]
Thus,
\[
A + B + C = \sin^{-1} 1 = \frac{\pi}{2}.
\]
Final answer:
\[
\boxed{
\sin^{-1} \frac{4}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{16}{65} = \frac{\pi}{2}.
}
\]