Let:
\[
\alpha = \tan^{-1} x, \quad \beta = \tan^{-1} y.
\]
Then,
\[
\tan \alpha = x, \quad \tan \beta = y.
\]
Using the tangent addition formula:
\[
\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{x + y}{1 - xy}.
\]
Since \(\alpha = \tan^{-1} x\) and \(\beta = \tan^{-1} y\), it follows that:
\[
\alpha + \beta = \tan^{-1} \left( \frac{x + y}{1 - xy} \right),
\]
provided the expression is defined (i.e., \(xy<1\)).