Step 1: Simplify the integrand using an identity.
We know that
\[
\sin(2\tan^{-1}x) = \frac{2x}{1+x^2}.
\]
Thus,
\[
\sin^{-1}\!\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x.
\]
Step 2: Rewrite the integral.
\[
I = \int \sin^{-1}\!\left(\frac{2x}{1+x^2}\right) dx = \int 2\tan^{-1}x \, dx.
\]
Step 3: Use integration by parts.
Let
\[
u = 2\tan^{-1}x, dv = dx.
\]
Then,
\[
du = \frac{2}{1+x^2} dx, v = x.
\]
By parts formula:
\[
I = uv - \int v \, du
\]
\[
I = 2x\tan^{-1}x - \int x \cdot \frac{2}{1+x^2} dx.
\]
Step 4: Solve the remaining integral.
\[
\int \frac{2x}{1+x^2} dx = \ln(1+x^2).
\]
So,
\[
I = 2x\tan^{-1}x - \ln(1+x^2) + C.
\]
Final Answer: \[ \boxed{ \int \sin^{-1}\!\left(\frac{2x}{1+x^2}\right) dx = 2x\tan^{-1}x - \ln(1+x^2) + C } \]