Question:

Prove that: \( \int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx \).

Show Hint

Use substitution to transform integral limits; check variable changes carefully.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Consider the integral \( \int_a^{2a} f(x) \, dx \). Substitute \( u = 2a - x \): \[ x = a \Rightarrow u = 2a - a = a, \quad x = 2a \Rightarrow u = 0, \quad dx = -du. \] \[ \int_a^{2a} f(x) \, dx = \int_a^0 f(2a - u) (-du) = \int_0^a f(2a - u) \, du. \] Thus: \[ \int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_a^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a - x) \, dx. \] Proved.
Was this answer helpful?
0
0