Δ=|a2 bc ac+c2 a2+ab b2 ac ab b2+bc c2|
Taking out common factors a,b and c from C1,C2 and C3 we have,
Δ=abc|a c a+c a+b b a b b+c c|
Applying R2→R2-R1 and R3→R3-R1,we have:
Δ=abc|a c a+c b b-c -c b-a b -a |
Applying R2→R2+R1,we heve:
Δ=abc|a c a+c a+b b a b-a b -a|
Applying R3→R3+R2,we heve:
Δ=abc|a c a+c a+b b a 2b 2b 0|
=2a2bc|a c a+c a+b b a 2b 2b 0|
ApplyingC2→C2-C1,we heve:
Δ=2a2bc|a c-a a+c a+b -a a 100|
Expanding along R3,we have:
Δ=2a2bc[a(c-a)+a(a+c)]
=2a2bc[ac-a2+a2+ac]
=2a2bc(2ac)
=4a2b2c2
Hence,the given result is proved.
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to