Δ=|a2 bc ac+c2 a2+ab b2 ac ab b2+bc c2|
Taking out common factors a,b and c from C1,C2 and C3 we have,
Δ=abc|a c a+c a+b b a b b+c c|
Applying R2→R2-R1 and R3→R3-R1,we have:
Δ=abc|a c a+c b b-c -c b-a b -a |
Applying R2→R2+R1,we heve:
Δ=abc|a c a+c a+b b a b-a b -a|
Applying R3→R3+R2,we heve:
Δ=abc|a c a+c a+b b a 2b 2b 0|
=2a2bc|a c a+c a+b b a 2b 2b 0|
ApplyingC2→C2-C1,we heve:
Δ=2a2bc|a c-a a+c a+b -a a 100|
Expanding along R3,we have:
Δ=2a2bc[a(c-a)+a(a+c)]
=2a2bc[ac-a2+a2+ac]
=2a2bc(2ac)
=4a2b2c2
Hence,the given result is proved.
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: