Δ=|a2 bc ac+c2 a2+ab b2 ac ab b2+bc c2|
Taking out common factors a,b and c from C1,C2 and C3 we have,
Δ=abc|a c a+c a+b b a b b+c c|
Applying R2→R2-R1 and R3→R3-R1,we have:
Δ=abc|a c a+c b b-c -c b-a b -a |
Applying R2→R2+R1,we heve:
Δ=abc|a c a+c a+b b a b-a b -a|
Applying R3→R3+R2,we heve:
Δ=abc|a c a+c a+b b a 2b 2b 0|
=2a2bc|a c a+c a+b b a 2b 2b 0|
ApplyingC2→C2-C1,we heve:
Δ=2a2bc|a c-a a+c a+b -a a 100|
Expanding along R3,we have:
Δ=2a2bc[a(c-a)+a(a+c)]
=2a2bc[ac-a2+a2+ac]
=2a2bc(2ac)
=4a2b2c2
Hence,the given result is proved.
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
