If a random variable X has the following probability distribution values:
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
P(X) | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12 |
Then P(X ≥ 6) has the value:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.
Probability is defined as the extent to which an event is likely to happen. It is measured by the ratio of the favorable outcome to the total number of possible outcomes.
The set of possible results or outcomes in a trial is referred to as the sample space. For instance, when we flip a coin, the possible outcomes are heads or tails. On the other hand, when we roll a single die, the possible outcomes are 1, 2, 3, 4, 5, 6.
In a sample space, a sample point is one of the possible results. For instance, when using a deck of cards, as an outcome, a sample point would be the ace of spades or the queen of hearts.
When the results of a series of actions are always uncertain, this is referred to as a trial or an experiment. For Instance, choosing a card from a deck, tossing a coin, or rolling a die, the results are uncertain.
An event is a single outcome that happens as a result of a trial or experiment. For instance, getting a three on a die or an eight of clubs when selecting a card from a deck are happenings of certain events.
A possible outcome of a trial or experiment is referred to as a result of an outcome. For instance, tossing a coin could result in heads or tails. Here the possible outcomes are heads or tails. While the possible outcomes of dice thrown are 1, 2, 3, 4, 5, or 6.