When two dice are rolled together:
- Total number of possible outcomes = \(6 \times 6 = 36\).
- Let the outcome be \((a, b)\) where:
- \(a\) = number on the first die
- \(b\) = number on the second die
Step 1: Condition given
We want the probability that:
\[
b = 2a
\]
Step 2: Find favorable outcomes
List possible values of \(a\) from 1 to 6 and calculate \(b = 2a\):
- If \(a = 1\), \(b = 2 \times 1 = 2\). Outcome: (1, 2) (valid since \(b \leq 6\))
- If \(a = 2\), \(b = 2 \times 2 = 4\). Outcome: (2, 4) (valid)
- If \(a = 3\), \(b = 2 \times 3 = 6\). Outcome: (3, 6) (valid)
- If \(a = 4\), \(b = 8\) (invalid, since \(b > 6\))
- If \(a = 5\), \(b = 10\) (invalid)
- If \(a = 6\), \(b = 12\) (invalid)
Step 3: Number of favorable outcomes
There are 3 favorable outcomes: (1, 2), (2, 4), (3, 6).
Step 4: Calculate probability
\[
P(b = 2a) = \frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}} = \frac{3}{36} = \frac{1}{12}
\]
Final Answer:
\[
\boxed{\frac{1}{12}}
\]