We can find the velocity (v) of the particle at any time by taking the derivative of its position (x) with respect to time (t):v = dx/dt
For the given position function, x = 2.5t^2, we have:
v = d(2.5t^2)/dt = 5t
Therefore, the velocity of the particle at time t is 5t m/s.
To find the velocity at t = 5 seconds, we substitute t = 5 into the expression for v:
v = 5t = 5(5) = 25 m/s
Hence, the speed of the particle at t = 5 seconds is 25 m/s. Note that speed is the magnitude of velocity and is always non-negative, so we don't need to include a sign.
The correct Answer is C.
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If the system of equations \[ x + 2y - 3z = 2, \quad 2x + \lambda y + 5z = 5, \quad 14x + 3y + \mu z = 33 \] has infinitely many solutions, then \( \lambda + \mu \) is equal to:}