Let \( P = (x_1, y_1) \in 3x + 4y - 4 = 0 \), and
\( Q = (x_2, y_2) \in 5x - y - 4 = 0 \)
Midpoint:
\[
\left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) = (1, 5)
\Rightarrow x_1 + x_2 = 2,\quad y_1 + y_2 = 10
\]
Now express:
From \( P \in 3x + 4y = 4 \Rightarrow y_1 = \frac{4 - 3x_1}{4} \)
From \( Q \in 5x - y = 4 \Rightarrow y_2 = 5x_2 - 4 \)
Now use:
\[
y_1 + y_2 = 10
\Rightarrow \frac{4 - 3x_1}{4} + (5x_2 - 4) = 10
\Rightarrow \frac{4 - 3x_1 + 20x_2 - 16}{4} = 10
\Rightarrow \frac{-3x_1 + 20x_2 - 12}{4} = 10
\Rightarrow -3x_1 + 20x_2 = 52 \quad \text{(1)}
\]
Also: \( x_1 + x_2 = 2 \Rightarrow x_1 = 2 - x_2 \)
Sub into (1):
\[
-3(2 - x_2) + 20x_2 = 52 \Rightarrow -6 + 3x_2 + 20x_2 = 52
\Rightarrow 23x_2 = 58 \Rightarrow x_2 = \frac{58}{23} = \frac{58}{23}
\Rightarrow x_1 = 2 - \frac{58}{23} = \frac{46 - 58}{23} = -\frac{12}{23}
\]
Now find \( y_1, y_2 \):
\[
y_1 = \frac{4 - 3x_1}{4} = \frac{4 + \frac{36}{23}}{4} = \frac{\frac{92 + 36}{23}}{4} = \frac{128}{92} = \frac{32}{23}
\]
\[
y_2 = 5x_2 - 4 = \frac{290}{23} - 4 = \frac{198}{23}
\]
Now slope:
\[
m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\frac{198 - 32}{23}}{\frac{58 + 12}{23}} = \frac{166}{70} = \boxed{ \frac{83}{35} }
\]