\(λ_e > λ_p > λ_α\)
\(λ_α > λ_e > λ_p\)
\(λ_p = λ_α = λ_e\)
\(λ_p > λ_e > λ_α\)
The matter waves, the wavelength is associated with the microscopic particles like protons, electrons, neutrons, \(\alpha\)-particle etc., is or the order of \(10^{-10}m\).
The relation between de-Broglie wavelength \(\lambda\) and the kinetic energy \(K\) of the particle is given by:
\(λ = \frac{h}{m.v} = \frac{h}{√(2.m.K.E)}\)
\(\text{as K.E. is same } λ∝\frac{1}{\sqrt{m}}\)
mass of electron = \(9.1 × 10^{-31}\) kg
mass of proton = \(1.67 × 10^{-27}\) kg
mass of α-particle = \(6.68 × 10^{-27}\) kg
\(λ_e > λ_p > λ_α\)
So, the correct option is (A): \(λ_e > λ_p > λ_α\)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

