Let \( x_1 = -2, x_2 = 1 \) and \( x_3 = -1 \) be the observed values of a random sample of size three from a discrete distribution with the probability mass function \[ f(x; \theta) = P(X = x) = \begin{cases} \frac{1}{2 \theta + 1}, & x \in \{-\theta, -\theta + 1, \dots, 0, \dots, \theta \}, \\ 0, & \text{otherwise}, \end{cases} \] where \( \theta \in \{ 1, 2, \dots \} \) is the unknown parameter. Then the method of moment estimate of \( \theta \) is