Let [t] denote the greatest integer function. If \(\int\limits_0^{2.4}[x^2]dx=α+β√2+γ√3+δ√5,\) then α+β+γ +δ is equal to _____.
Let \( k \) and \( m \) be positive real numbers such that the function} \[ f(x) = \begin{cases} 3x^2 + \frac{k}{\sqrt{x} + 1}, & 0 < x < 1, \\ mx^2 + k^2, & x \geq 1 \end{cases} \] is differentiable for all \( x > 0 \). Then \( 8f'(8) \left(\frac{1}{f(8)}\right) \) is equal to __________
Let \( m \) and \( n \) be the numbers of real roots of the quadratic equations \( x^2 - 12x + [x] + 31 = 0 \) and \( x^2 - 5|x+2| - 4 = 0 \), respectively, where \( [x] \) denotes the greatest integer less than or equal to \( x \). Then \( m^2 + mn + n^2 \) is equal to ___________.
The negation of \( (p \land (\sim q)) \lor (\sim p) \) is equivalent to:
Let the mean and variance of 12 observations be \( \frac{9}{2} \) and 4, respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is \( \frac{m}{n} \), where \( m \) and \( n \) are coprime, then \( m + n \) is equal to:
If the probability that the random variable \( X \) takes values \( x \) is given by \( P(X = x) = k(x + 1) 3^{-x}, x = 0, 1, 2, \dots \), where \( k \) is a constant, then \( P(X \geq 2) \) is equal to:
Let the vectors \(\mathbf{u}_1 = \hat{i} + \hat{j} + a\hat{k}, \mathbf{u}_2 = \hat{i} + b\hat{j} + \hat{k}\), and \(\mathbf{u}_3 = c\hat{i} + \hat{j} + \hat{k}\) be coplanar. If the vectors \(\mathbf{v}_1 = (a + b)\hat{i} + c\hat{j} + c\hat{k}, \mathbf{v}_2 = a\hat{i} + (b + c)\hat{j} + a\hat{k}, \mathbf{v}_3 = b\hat{i} + b\hat{j} + (c + a)\hat{k}\) are also coplanar, then \(6(a + b + c)\) is equal to: