>
questions
List of practice Questions
Consider the initial value problem
\(\frac{dy}{dx}+αy=0, \\ y(0)=1,\)
where α ∈
\(\R\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
Let p(x) = x
57
+ 3x
10
- 21x
3
+ x
2
+ 21 and
\(q(x)=p(x)+\sum\limits_{j=1}^{57}p^{(j)}(x) \ \text{for all }x \in \R,\)
where p
(j)
(x) denotes the j
th
derivative of p(x). Then the function q admits
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Functions of One Real Variable
The limit
\(\lim\limits_{a\rightarrow0}\left(\frac{\int\limits_{0}^{a}\sin(x^2)dx}{\int\limits_{0}^{a}(\ln(x+1))^2dx}\right)\)
is
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
The value of
\(\int^1_0\int_0^{1-x}\cos(x^3+y^2)dy\ dx-\int^1_0\int_0^{1-x}\cos(x^3+y^2)dx\ dy\)
is
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
Let
\(a_n=\left(1+\frac{1}{n}\right)^n\)
and
\(b_n=n\cos(\frac{n!\pi}{2^{10}})\)
for n ∈
\(\N\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let (an) be a sequence of real numbers defined by
\(a_n=\begin{cases} 1 & \text{if } n \text{ is prime}\\ -1 & \text{if } n \text{ is not prime} \end{cases}\)
Let
\(b_n=\frac{a_n}{n}\)
for n ∈
\(\N\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let S and T be non-empty subsets of
\(\R^2\)
, and W be a non-zero proper subspace of
\(\R^2\)
. Consider the following statements :
I. If span(S) =
\(\R^2\)
, then span(S ∩ W) = W.
II. span(S ∪ T) = span(S) ∪ span(T).
Then
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Finite Dimensional Vector Spaces
Consider the following statements :
I. Every infinite group has infinitely many subgroups.
II. There are only finitely many non-isomorphic groups of a given finite order.
Then
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
Let
\(f(x,y)=\iint\limits_{(u-x^2)+(v-y)^2 \le 1}e^{-\sqrt{(u-x)^2+(v-y)^2}}du\ dv.\)
Then
\(\lim\limits_{n \rightarrow \infin}f(n,n^2)\)
is
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
For each t ∈ (0, 1), the surface P
t
in
\(\R^3\)
is defined by
\(P_t = \left\{(x, y, z) : (x^2 + y^2 )z = 1, t^2 ≤ x^2 + y^2 ≤ 1\right\}.\)
Let a
t
∈ R be the surface area of P
t
. Then
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
Which of the following functions is/are Riemann integrable on [0, 1] ?
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
A subset S ⊆
\(\R^2\)
is said to be bounded if there is an M > 0 such that |x| ≤ M and |y| ≤ M for all (x, y) ∈ S. Which of the following subsets of
\(\R^2\)
is/are bounded ?
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
Let f :
\(\R^2 → \R\)
be defined as follows :
\(f(x,y)=\begin{cases} \frac{x^4y^3}{x^6+y^6} & \text{if }(x,y) \ne (0,0)\\ 0 & \text{if } (x,y)=(0,0) \end{cases}\)
Then
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
Which of the following is/are true ?
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Finite Dimensional Vector Spaces
Which of the following is/are linear transformations ?
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Matrices
Let R
1
and R
2
be the radii of convergence of the power series
\(\sum\limits_{n=1}^{\infin}(-1)^nx^{n-1}\)
and
\(\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)}\)
, respectively. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let f :
\(\R^2 → \R\)
be the function defined as follows :
\(f(x,y)=\begin{cases} (x^2-1)^2\cos^2(\frac{y^2}{(x^2-1)^2}) & \text{if }x \ne ±1 \\ 0 & \text{if } x=±1\end{cases}\)
The number of points of discontinuity of f(x, y) is equal to _________.
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
The value of
\(\lim\limits_{n\rightarrow \infin}\left(n\int\limits^1_0\frac{x^n}{x+1}dx\right)\)
is equal to __________ . (rounded off to two decimal places)
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
For σ ∈ S
8
, let o(σ) denote the order of σ. Then max{o(σ) : σ ∈ S
8
} is equal to __________.
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
For g ∈
\(\Z\)
, let
\(\bar{g}\)
∈
\(\Z_8\)
denote the residue class of g modulo 8. Consider the group
\(\Z^×_8\)
= {
\(\bar{x}\)
∈
\(\Z_8\)
: 1 ≤ x ≤ 7, gcd(x, 8) = 1} with respect to multiplication modulo 8. The number of group isomorphisms from
\(\Z^×_8\)
onto itself is equal to ________
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
Let f(x) =
\(\sqrt[3]{x}\)
for x ∈ (0, ∞), and θ(h) be a function such that
f(3 + h) − f(3) = hf′ (3 + θ(h)h)
for all h ∈ (−1, 1). Then
\(\lim\limits_{h→0} θ(h)\)
is equal to _________. (rounded off to two decimal places)
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Functions of One Real Variable
Let V be the volume of the region S ⊆
\(\R^3\)
defined by
S = {(x, y, z) ∈
\(\R^3\)
: xy ≤ z ≤ 4, 0 ≤ x
2
+ y
2
≤ 1}.
Then
\(\frac{V}{π}\)
is equal to ________ . (rounded off to two decimal places)
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
The sum of the series
\(\sum\limits_{n=1}^{\infin}\frac{2n+1}{(n^2+1)(n^2+2n+2)}\)
is equal to _________.(rounded off to two decimal places)
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
The value of
\(\lim\limits_{n \rightarrow \infin}\left(1+\frac{1}{2^n}+\frac{1}{3^n}+...+\frac{1}{(2023)^n}\right)^\frac{1}{n}\)
is equal to _____________ . (rounded off to two decimal places)
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let y : (1, ∞) →
\(\R\)
be the solution of the differential equation
\(y"-\frac{2y}{(1-x)^2}=0\)
satisfying y(2) = 1 and
\(\lim\limits_{x→∞}y(x) = 0\)
. Then y(3) is equal to __________. (rounded off to two decimal places)
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
Prev
1
...
3592
3593
3594
3595
3596
...
7098
Next