Consider the probability space $(\Omega, \mathcal{G}, P)$, where $\Omega = [0,2]$ and $\mathcal{G} = \{\emptyset, \Omega, [0,1], (1,2]\}$. Let $X$ and $Y$ be two functions on $\Omega$ defined as}
\[
X(\omega) =
\begin{cases}
1 & \text{if } \omega \in [0,1] \\
2 & \text{if } \omega \in (1,2]
\end{cases}
\]
and
\[
Y(\omega) =
\begin{cases}
2 & \text{if } \omega \in [0,1.5] \\
3 & \text{if } \omega \in (1.5,2]
\end{cases}
\]
Then which one of the following statements is true?