Negation of \( p \land (q \land \neg (p \land q)) \) is:}
To find the negation of the statement (¬p∧q)∨(p∧¬q), we will follow the steps of logical negation and apply De Morgan's laws.
1. Write down the original statement:
S=(¬p∧q)∨(p∧¬q)
2. Apply negation to the entire statement:
¬S=¬((¬p∧q)∨(p∧¬q))
3. Use De Morgan's Law: According to De Morgan's laws, the negation of a disjunction is the conjunction of the negations:
¬S=¬(¬p∧q)∧¬(p∧¬q)
4. Apply De Morgan's Law to each part:
¬(¬p∧q)=¬(¬p)∨¬(q)=p∨¬q
¬(p∧¬q)=¬(p)∨¬(¬q)=¬p∨q
5. Combine the results:
¬S=(p∨¬q)∧(¬p∨q)
6. Final expression:
The negation of the original statement is: ¬S=(p∨¬q)∧(¬p∨q)
If probability of happening of an event is 57%, then probability of non-happening of the event is
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
