



To determine the structure of "P," we need to analyze the given information and apply it to identify the compound among the given options:
Based on these observations, the compound "P" must be a ketone with a chiral center. Now, let us examine the options visually:
From the above analysis, the correct structure of "P" is the second option:
Conclusion: "P" is a ketone with a chiral center, fulfilling the conditions of being optically active, reacting positively with 2,4-DNP, and negatively with Tollens reagent.
Step 1: Analyze the molecular formula and deduce possible functional groups.
The molecular formula \( C_6H_{12}O \) suggests a degree of unsaturation of \( (2 \times 6 + 2 - 12) / 2 = 1 \). This indicates the presence of either a double bond or a ring. The positive test with 2,4-dinitrophenylhydrazine indicates the presence of a carbonyl group (aldehyde or ketone), which accounts for the one degree of unsaturation (C=O double bond). The negative test with Tollens reagent indicates the absence of an aldehyde group (as Tollens reagent oxidizes aldehydes to carboxylic acids, forming a silver mirror). Therefore, "P" must be a ketone.
Step 2: Consider the condition of optical activity.
For a molecule to be optically active, it must be chiral, meaning it has a stereocenter (a carbon atom bonded to four different groups). We need to examine the given ketone structures to identify one that has a chiral carbon atom.
Step 3: Examine each option.
(1) \( CH_3-C(=O)-CH_2-CH_2-CH_2-CH_3 \) (2-hexanone): The carbonyl carbon is bonded to a methyl group, a \( -CH_2- \) group, and a \( -CH_2-CH_2-CH_3 \) group. No other carbon atom is bonded to four different groups.
This molecule is achiral.
(2) \( CH_3-C(=O)-CH(CH_3)-CH_2-CH_3 \) (3-methyl-2-pentanone): The carbon atom at position 3 is bonded to a methyl group (\( -CH_3 \)), an ethyl group (\( -CH_2-CH_3 \)), a \( -CH_2-C(=O)-CH_3 \) group, and a hydrogen atom. These are four different groups, so the carbon at position 3 is a stereocenter.
This molecule is chiral and a ketone.
(3) \( H-C(=O)-CH_2-CH(CH_3)-CH_2-CH_3 \) (2-methylpentanal): This is an aldehyde (positive Tollens test), so it cannot be "P".
(4) \( CH_3-C(=O)-CH_2-CH(CH_3)-CH_3 \) (4-methyl-2-pentanone): The carbonyl carbon is bonded to a methyl group, a \( -CH_2- \) group, and a \( -CH(CH_3)-CH_3 \) group.
No other carbon atom is bonded to four different groups. This molecule is achiral.
Step 4: Identify the structure that fits all the conditions.
The compound must be a ketone (positive 2,4-DNP, negative Tollens) and optically active (chiral). Only option (2), 3-methyl-2-pentanone, satisfies both these conditions. The carbon at position 3 is a stereocenter, making the molecule chiral.
Which one of the following graphs accurately represents the plot of partial pressure of CSâ‚‚ vs its mole fraction in a mixture of acetone and CSâ‚‚ at constant temperature?

Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider the following reaction sequence: 
Given: Compound (x) has percentage composition \(76.6%\ \text{C}\), \(6.38%\ \text{H}\) and vapour density \(=47\). Compound (y) develops a characteristic colour with neutral \(\mathrm{FeCl_3}\) solution. Identify the {INCORRECT statement.}
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
