A coin has a true probability \( \mu \) of turning up Heads. This coin is tossed 100 times and shows up Heads 60 times. The following hypothesis is tested:
\[ H_0: \mu = 0.5 \quad ({Null Hypothesis}), \quad H_1: \mu>0.5 \quad ({Alternative Hypothesis}) \]
Using the Central Limit Theorem, the \( p \)-value of the above test is ________ (round off to three decimal places).
Hint: If Z is a random variable that follows a standard normal distribution, then P (Z ≤ 2) = 0.977.
Consider a lottery with three possible outcomes:
The maximum amount that a risk-neutral person would be willing to pay to play the above lottery is INR ____________.
For the circuit shown in the figure, the active power supplied by the source is ________ W (rounded off to one decimal place).
A signal $V_M = 5\sin(\pi t/3) V$ is applied to the circuit consisting of a switch S and capacitor $C = 0.1 \mu F$, as shown in the figure. The output $V_x$ of the circuit is fed to an ADC having an input impedance consisting of a $10 M\Omega$ resistance in parallel with a $0.1 \mu F$ capacitor. If S is opened at $t = 0.5 s$, the value of $V_x$ at $t = 1.5 s$ will be ________ V (rounded off to two decimal places).
Note: Assume all components are ideal.
In the circuit shown, the switch is opened at $t = 0$ s. The current $i(t)$ at $t = 2$ ms is ________ mA (rounded off to two decimal places).
In the circuit shown, the galvanometer (G) has an internal resistance of $100 \Omega$. The galvanometer current $I_G$ is ________ $\mu A$ (rounded off to the nearest integer).
The circuit given in the figure is driven by a voltage source $V_s = 25\sqrt{2}\angle 30^\circ V$. The system is operating at a frequency of 50 Hz. The transformers are assumed to be ideal. The average power dissipated, in W, in the $50 k\Omega$ resistance is ________ (rounded off to two decimal places).