O\(_2\) gas will be evolved as a product of electrolysis of:
(A) an aqueous solution of AgNO3 using silver electrodes.
(B) an aqueous solution of AgNO3 using platinum electrodes.
(C) a dilute solution of H2SO4 using platinum electrodes.
(D) a high concentration solution of H2SO4 using platinum electrodes.
Choose the correct answer from the options given below :
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is ….. (Nearest integer).
If \( E^\circ_{Fe^{2+}/Fe} = -0.441 \, \text{V} \) and \( E^\circ_{Fe^{3+}/Fe^{2+}} = 0.771 \, \text{V} \),
the standard emf of the cell reaction \( Fe(s) + 2Fe^{3+}(aq) \rightarrow 3Fe^{2+}(aq) \) is:
\[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] For the reaction, \( Fe^{3+} \) is reduced to \( Fe^{2+} \) (reduction at the cathode), and \( Fe \) is oxidized to \( Fe^{2+} \) (oxidation at the anode). So: \[ E^\circ_{\text{cell}} = E^\circ_{Fe^{3+}/Fe^{2+}} - E^\circ_{Fe^{2+}/Fe} \] \[ E^\circ_{\text{cell}} = 0.771 \, \text{V} - (-0.441 \, \text{V}) = 0.771 + 0.441 = 1.212 \, \text{V} \] Hence, the standard emf of the cell reaction is \( 1.212 \, \text{V} \).
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to:
A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Electrolysis is the process by which an element is decomposed and undergoes some chemical change under the influence of any electric current. The first-ever electrolysis was executed out by Sir Humphrey Davey in the year 1808. Electrolysis can occur in both Galvanic cells and Electrolytic cells.
Read More: Products of Electrolysis