Step 1: Calculate the initial pH of the buffer solution.
Using the Henderson-Hasselbalch equation for a basic buffer: $$pOH_{initial} = pK_b + \log_{10} \frac{[salt]}{[base]} = 4.745 + \log_{10} \frac{0.10}{0.10} = 4.745$$ $$pH_{initial} = 14 - pOH_{initial} = 9.255$$
Step 2: Calculate the pH after the addition of HCl.
The reaction with HCl changes the concentrations of the base and its salt: $$NH_3 + HCl \rightarrow NH_4^+ + Cl^-$$ New moles: \( [NH_3] = 0.05 \) M, \( [NH_4^+] = 0.15 \) M $$pOH_{final} = pK_b + \log_{10} \frac{[NH_4^+]}{[NH_3]} = 4.745 + \log_{10} \frac{0.15}{0.05} = 4.745 + 0.477 = 5.222$$ $$pH_{final} = 14 - pOH_{final} = 8.778$$
Step 3: Calculate the change in pH.
$$\Delta pH = pH_{final} - pH_{initial} = 8.778 - 9.255 = -0.477$$
The magnitude of the change is \( |\Delta pH| = 0.477 \).
Expressing this in the required format: \( 0.477 = 47.7 \times 10^{-2} \).
Rounding to the nearest integer gives 48.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: