Step 1: Calculate the initial pH of the buffer solution.
Using the Henderson-Hasselbalch equation for a basic buffer: $$pOH_{initial} = pK_b + \log_{10} \frac{[salt]}{[base]} = 4.745 + \log_{10} \frac{0.10}{0.10} = 4.745$$ $$pH_{initial} = 14 - pOH_{initial} = 9.255$$
Step 2: Calculate the pH after the addition of HCl.
The reaction with HCl changes the concentrations of the base and its salt: $$NH_3 + HCl \rightarrow NH_4^+ + Cl^-$$ New moles: \( [NH_3] = 0.05 \) M, \( [NH_4^+] = 0.15 \) M $$pOH_{final} = pK_b + \log_{10} \frac{[NH_4^+]}{[NH_3]} = 4.745 + \log_{10} \frac{0.15}{0.05} = 4.745 + 0.477 = 5.222$$ $$pH_{final} = 14 - pOH_{final} = 8.778$$
Step 3: Calculate the change in pH.
$$\Delta pH = pH_{final} - pH_{initial} = 8.778 - 9.255 = -0.477$$
The magnitude of the change is \( |\Delta pH| = 0.477 \).
Expressing this in the required format: \( 0.477 = 47.7 \times 10^{-2} \).
Rounding to the nearest integer gives 48.
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]