Step 1: We need to compute \( \left( \frac{1 + i}{\sqrt{2}} \right)^{2/3} \). First, write \( 1 + i \) in polar form as \( \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \). Step 2: Using De Moivre’s Theorem, we get:
\[
\left( \frac{1 + i}{\sqrt{2}} \right)^{2/3} = \frac{1}{2} \left( \sqrt{3} + i \right).
\]
Final Answer:
\[
\boxed{\frac{1}{2} \left( \sqrt{3} + i \right)}
\]