Question:

One of the values of \[ \left( \frac{1 + i}{\sqrt{2}} \right)^{2/3} \] is:

Show Hint

To calculate powers and roots of complex numbers, express them in polar form and apply De Moivre’s Theorem.
Updated On: Jan 12, 2026
  • \( \frac{1}{2} \left( \sqrt{3} + i \right) \)
  • \( -i \)
  • \( i \)
  • \( -\sqrt{3} + i \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: We need to compute \( \left( \frac{1 + i}{\sqrt{2}} \right)^{2/3} \). First, write \( 1 + i \) in polar form as \( \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \).
Step 2: Using De Moivre’s Theorem, we get: \[ \left( \frac{1 + i}{\sqrt{2}} \right)^{2/3} = \frac{1}{2} \left( \sqrt{3} + i \right). \]
Final Answer: \[ \boxed{\frac{1}{2} \left( \sqrt{3} + i \right)} \]
Was this answer helpful?
0
0