1. Given data:
2. Calculate the change in enthalpy (\( \Delta H \)):
\[ \Delta H = \Delta U + \Delta (PV) \] \[ \Delta H = \Delta U + (P_2V_2 - P_1V_1) \] \[ \Delta H = 60 \, \text{L-atm} + (4.0 \, \text{atm} \times 5.0 \, \text{L} - 1.0 \, \text{atm} \times 3.0 \, \text{L}) \] \[ \Delta H = 60 \, \text{L-atm} + (20 \, \text{L-atm} - 3 \, \text{L-atm}) \] \[ \Delta H = 60 \, \text{L-atm} + 17 \, \text{L-atm} \] \[ \Delta H = 77 \, \text{L-atm} \]
3. Convert L-atm to Joules (J):
\[ \Delta H = 77 \, \text{L-atm} \times 101 \, \text{J/L-atm} \] \[ \Delta H = 7777 \, \text{J} \]
4. Convert Joules to Kilojoules (kJ):
\[ \Delta H = \frac{7777 \, \text{J}}{1000 \, \text{J/kJ}} \] \[ \Delta H = 7.777 \, \text{kJ} \]
Therefore, the change in enthalpy of the process is 7.77 kJ.
Final Answer: 7.77 kJ.
A sample of n-octane (1.14 g) was completely burnt in excess of oxygen in a bomb calorimeter, whose heat capacity is 5 kJ K\(^{-1}\). As a result of combustion, the temperature of the calorimeter increased by 5 K. The magnitude of the heat of combustion at constant volume is ___
A perfect gas (0.1 mol) having \( \bar{C}_V = 1.50 \) R (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is ____ J (nearest integer) [Given : R = 0.082 L atm K\(^{-1}\)] 
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: