Given: - Mass of the upper load: \(2 \, \text{kg}\) - Mass of the lower load: \(1 \, \text{kg}\)
The tension in the upper wire (\(T_{\text{upper}}\)) is due to the combined weight of both loads:
\[ T_{\text{upper}} = (2 \, \text{kg} + 1 \, \text{kg}) \times g = 3 \times 10 = 30 \, \text{N} \]
The tension in the lower wire (\(T_{\text{lower}}\)) is due to the weight of the lower load:
\[ T_{\text{lower}} = 1 \times 10 = 10 \, \text{N} \]
The longitudinal strain (\(\epsilon\)) is given by:
\[ \epsilon = \frac{\text{Stress}}{Y} = \frac{T}{A \times Y} \]
Calculating the strain in the upper wire:
\[ \epsilon_{\text{upper}} = \frac{T_{\text{upper}}}{A \times Y} = \frac{30}{5 \times 10^{-7} \times 2 \times 10^{11}} \] \[ \epsilon_{\text{upper}} = \frac{30}{2 \times 10^{6}} = 1.5 \times 10^{-5} \]
Calculating the strain in the lower wire:
\[ \epsilon_{\text{lower}} = \frac{T_{\text{lower}}}{A \times Y} = \frac{10}{5 \times 10^{-7} \times 2 \times 10^{11}} \] \[ \epsilon_{\text{lower}} = \frac{10}{2 \times 10^{6}} = 0.5 \times 10^{-5} \]
The ratio of the longitudinal strain of the upper wire to that of the lower wire is given by:
\[ \text{Ratio} = \frac{\epsilon_{\text{upper}}}{\epsilon_{\text{lower}}} = \frac{1.5 \times 10^{-5}}{0.5 \times 10^{-5}} = 3 \]
Conclusion: The ratio of longitudinal strain of the upper wire to that of the lower wire is \(3\).