
Step 3: Maximum tension condition
The maximum tension the rope can sustain is \( T_{\text{max}} = (2\sqrt{2})W \). Using this, we can set up the equation for the system's torque balance:
Torque due to beam's weight + Torque due to block's weight = Torque due to rope's tension
This gives the equation:
\( W \times \frac{L}{2} + \alpha W \times L = T_{\text{max}} \times L \)
Substituting \( T_{\text{max}} = 2\sqrt{2}W \), we get:
\( W \times \frac{L}{2} + \alpha W \times L = (2\sqrt{2}W) \times L \)
Canceling out the common factors of \( W \) and \( L \), we get:
\( \frac{1}{2} + \alpha = 2\sqrt{2} \)
Simplifying this, we find:
\( \alpha = 2\sqrt{2} - \frac{1}{2} \approx 2.828 - 0.5 = 2.328 \)
Step 4: Conclusion
The rope will break when \( \alpha > 1.5 \). This is because when \( \alpha \) exceeds this value, the torque generated by the block becomes too large for the rope to handle, and it reaches its maximum tension threshold.
Final Answer:
The rope breaks if \( \alpha > 1.5 \).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.