
Step 3: Maximum tension condition
The maximum tension the rope can sustain is \( T_{\text{max}} = (2\sqrt{2})W \). Using this, we can set up the equation for the system's torque balance:
Torque due to beam's weight + Torque due to block's weight = Torque due to rope's tension
This gives the equation:
\( W \times \frac{L}{2} + \alpha W \times L = T_{\text{max}} \times L \)
Substituting \( T_{\text{max}} = 2\sqrt{2}W \), we get:
\( W \times \frac{L}{2} + \alpha W \times L = (2\sqrt{2}W) \times L \)
Canceling out the common factors of \( W \) and \( L \), we get:
\( \frac{1}{2} + \alpha = 2\sqrt{2} \)
Simplifying this, we find:
\( \alpha = 2\sqrt{2} - \frac{1}{2} \approx 2.828 - 0.5 = 2.328 \)
Step 4: Conclusion
The rope will break when \( \alpha > 1.5 \). This is because when \( \alpha \) exceeds this value, the torque generated by the block becomes too large for the rope to handle, and it reaches its maximum tension threshold.
Final Answer:
The rope breaks if \( \alpha > 1.5 \).
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.