Step 1: Photoelectric equation.
\[
eV = \dfrac{hc}{\lambda} - \phi
\]
Step 2: Writing equations for both cases.
For wavelength $\lambda$:
\[
e(3.2) = \dfrac{hc}{\lambda} - \phi \quad \text{(1)}
\]
For wavelength $2\lambda$:
\[
e(0.7) = \dfrac{hc}{2\lambda} - \phi \quad \text{(2)}
\]
Step 3: Subtracting equation (2) from (1).
\[
e(2.5) = \dfrac{hc}{2\lambda}
\]
Step 4: Solving for $\lambda$.
\[
\lambda = \dfrac{hc}{5e}
\]
Using $hc = 12400$ eV\AA :
\[
\lambda = \dfrac{12400}{5} \,\text{\AA} = 2480\,\text{\AA}
\]
\[
\lambda = 2.48 \times 10^{-7}\,\text{m}
\]