Step 1: The given electric field consists of two frequencies: \[ \nu_1 = 3\times10^{14}\,\text{Hz}, \nu_2 = 12\times10^{14}\,\text{Hz} \]
Step 2: In the photoelectric effect, only the highest frequency photon determines the maximum kinetic energy of emitted electrons. \[ \nu_{\max} = 12\times10^{14}\,\text{Hz} \]
Step 3: Energy of a photon: \[ E = h\nu \] Using \( h = 4.14\times10^{-15}\,\text{eVs} \): \[ E_{\max} = 4.14\times10^{-15} \times 12\times10^{14} = 4.97\,\text{eV} \]
Step 4: Apply Einstein’s photoelectric equation: \[ K_{\max} = E_{\max} - \phi = 4.97 - 2.8 = 2.17\,\text{eV} \] \[ \boxed{K_{\max} \approx 2.16\,\text{eV}} \]

Which of the following statements are correct, if the threshold frequency of caesium is $ 5.16 \times 10^{14} \, \text{Hz} $?

\(1\,\text{g}\) of \( \mathrm{AB_2} \) is dissolved in \(50\,\text{g}\) of a solvent such that \( \Delta T_f = 0.689\,\text{K} \). When \(1\,\text{g}\) of \( \mathrm{AB} \) is dissolved in \(50\,\text{g}\) of the same solvent, \( \Delta T_f = 1.176\,\text{K} \). Find the molar mass of \( \mathrm{AB_2} \). Given \( K_f = 5\,\text{K kg mol}^{-1} \). \((\textit{Report to nearest integer.})\) Both \( \mathrm{AB_2} \) and \( \mathrm{AB} \) are non-electrolytes.
